metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Gang Zhu and Zong-Xun Tang*

Department of Chemistry, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China

Correspondence e-mail: tzxtq@163.com

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.006 Å R factor = 0.033 wR factor = 0.092 Data-to-parameter ratio = 12.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaquabis(1,10-phenanthroline- $\kappa^2 N, N'$)manganese(II) pentafluorooxoniobate(V)

In the title compound, $[Mn(C_{12}H_8N_2)_2(H_2O)_2][NbOF_5]$, each of the Mn^{II} and Nb^V atoms has a distorted octahedral coordination. In the $[NbOF_5]^{2-}$ anion, a characteristic short terminal Nb=O bond and a longer Nb-F bond are observed, which result in the out-of-center distortion of the octahedron, a manifestation of the second-order Jahn-Teller effect.

Comment

Early transition metal oxofluoro anions, such as $[NbOF_5]^{2-}$ and $[TaOF_5]^{2-}$, interest researchers because their inherent distortions mimic those in the $[NbO_{6/2}]^-$ octahedra in LiNbO₃, an excellent solid-state non-linear optical material. In the $[NbOF_5]^{2-}$ anion, the Nb atom is displaced from the center of the octahedron towards the O atom, forming a short Nb=O bond and a longer Nb-F bond. The distortion can be exploited when designing new materials that exhibit important structure-dependent properties, such as piezoelectricity, second-order non-linear optical activity and ferroelectricity (Heier *et al.*, 1998; Welk *et al.*, 2002). Here the synthesis and crystal structure of a mixed-metal complex, diaquabis(1,10phenanthroline)manganese(II) pentafluorooxoniobate, (I), which incorporates the $[NbOF_5]^{2-}$ anion, is reported.

The crystal structure of (I) consists of Mn^{II} complex cations and Nb^{V} complex anions (Fig. 1). The Mn^{II} atom has an octahedral coordination, formed by two 1,10-phenanthroline(phen) and two water molecules. The Nb^{V} atom assumes a distorted octahedral coordination, formed by five F atoms and one O atom. The Nb—F bond *trans* to the Nb=O bond is significantly longer than the other four Nb—F bonds in the same anion (Table 1). This feature has also been observed in previously reported structures (Halasyamani *et al.*, 1996; Norquist *et al.*, 1999; Izumi *et al.*, 2005).

Bond-valence sums (Izumi *et al.*, 2005) show that some of the F atoms are heavily underbonded (Table 3), and this is compensated by substantial hydrogen bonding (Table 2) to the complex cations. For example, the F atom (F5) *trans* to the

© 2006 International Union of Crystallography All rights reserved Received 15 March 2006 Accepted 6 April 2006

V = 1278.62 (9) Å³

 $D_{\rm r} = 1.702 \ {\rm Mg} \ {\rm m}^{-3}$

 $0.31 \times 0.20 \times 0.07 \text{ mm}$

12791 measured reflections

4530 independent reflections 3265 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.01 \text{ mm}^{-1}$

T = 273 (2) K

Block, yellow

 $R_{\rm int} = 0.033$

 $\theta_{\rm max} = 25.1^{\circ}$

Z = 2

The asymmetric unit of (I), with displacement ellipsoids drawn at the 30% probability level. All H atoms have been omitted. [Please provide revised figure with no parentheses in labels]

The molecular packing of (I), viewed along the c axis. For clarity, all H atoms have been omitted. Dashed lines indicate O-H···F hydrogenbonding interactions.

short Nb=O bond (F5) accepts three hydrogen bonds; F4 accepts two. Atom O3 is hydrogen-bonded to one OH group. All H atoms of the water molecules and some H atoms of phen are involved in hydrogen bonding. The complex hydrogenbonding scheme results in the crystal packing shown in Fig. 2.

Experimental

All reagents were of analytical grade from commercial sources and used without further purification. Nb₂O₅ (0.133 g, 0.5 mmol) was first dissolved in HF solution (1 ml, 42 wt% in H₂O) at 383 K for 2 h in a

Crystal data

 $[Mn(C_{12}H_8N_2)_2(H_2O)_2][NbF_5O]$ $M_r = 655.29$ Triclinic, $P\overline{1}$ a = 9.6242 (4) Å b = 11.3971 (5) Å c = 13.0605 (5) Å $\alpha = 72.341 \ (2)^{\circ}$ $\beta = 70.054$ (3) $\gamma = 79.686 (3)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2002)

 $T_{\min} = 0.746, \ T_{\max} = 0.937$

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.033$	independent and constrained
$wR(F^2) = 0.092$	refinement
S = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0507P)^2]$
4530 reflections	where $P = (F_0^2 + 2F_c^2)/3$
360 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.46 \text{ e} \text{ Å}^{-3}$

$\Delta \rho_{\rm max} = -0.53 \text{ e } \text{\AA}^{-3}$

Table 1

Select	ed	bond	lengt	hs (A).
--------	----	------	-------	---------

Nb1-O3	1.756 (2)	Mn1-O2	2.137 (3)
Nb1-F2	1.885 (3)	Mn1-O1	2.149 (2)
Nb1-F1	1.892 (2)	Mn1-N4	2.245 (3)
Nb1-F4	1.927 (3)	Mn1-N1	2.254 (3)
Nb1-F3	1.964 (2)	Mn1-N2	2.281 (3)
Nb1-F5	2.0516 (19)	Mn1-N3	2.286 (3)

Та	ble	2	
* *			

Hydrogen-bond	geometry	(Å,	°)
---------------	----------	-----	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O1-H1C\cdots F3^{i}$	0.85 (3)	1.81 (3)	2.660 (3)	176 (4)
$O1 - H1D \cdots O3^{ii}$	0.83 (3)	1.83 (3)	2.649 (3)	175 (5)
$O2-H2C\cdots F5^{iii}$	0.84 (2)	1.72 (2)	2.552 (3)	172 (3)
$O2-H2D\cdots F4^{i}$	0.82(3)	2.31 (4)	2.947 (4)	135 (4)
$O2-H2D\cdots F5^{i}$	0.82(3)	2.25 (3)	3.028 (3)	157 (5)
$C1 - H1A \cdot \cdot \cdot F1^{iii}$	0.93	2.48	3.064 (4)	121
$C3-H3\cdots F1^{iv}$	0.93	2.46	3.283 (6)	147
$C5-H5\cdots O1^{v}$	0.93	2.59	3.330 (6)	137
$C17-H17\cdots F4^{vi}$	0.93	2.43	3.278 (6)	152
$C18-H18\cdots F5^{vii}$	0.93	2.44	3.344 (6)	166

Symmetry codes: (i) x - 1, y, z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y, -z + 1; (iv) x - 1, y, z; (v) -x, -y + 1, -z + 1; (vi) -x + 2, -y, -z + 1;(vii) x, y, z + 1.

Table 3	
Bond-valence	parameters.

	S_i	$V-S_i$
Nb1-O3	1.52	0.48
Nb1-F2	0.84	0.16
Nb1-F1	0.83	0.17
Nb1-F4	0.75	0.25
Nb1-F3	0.68	0.32
Nb1-F5	0.54	0.46

Water H atoms were located in a different Fourier map and refined with a restrained O–H bond length of 0.85 (2) Å and fixed isotropic displacement parameters of 0.08 Å². Other H atoms were placed at calculated positions and refined as riding, with C–H = 0.93 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL.

We sincerely thank the Provincial Natural Foundation of Shaanxi for support.

References

- Bruker (2002). SAINT, and SMART and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Halasyamani, P., Willis, M. J., Stern, C. L., Lundquist, P. M., Wong, G. K. & Poeppelmeier, K. R. (1996). *Inorg. Chem.* **35**, 1367–1371.
- Heier, K. R., Norquist, A. J., Wilson, C. G., Stern, C. L. & Poeppelmeier, K. R. (1998). *Inorg. Chem.* **37**, 76–80.
- Izumi, H. K., Kirsch, J. E., Stern, C. L. & Poeppelmeier, K. R. (2005). Inorg. Chem. 44, 884–895.
- Norquist, A. J., Stern, C. L. & Poeppelmeier, K. R. (1999). Inorg. Chem. 38, 3448–3449.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
- Welk, M. E., Norquist, A. J., Arnold, F. P., Stern, C. L. & Poeppelmeier, K. R. (2002). Inorg. Chem. 41, 5119–5125.