Acta Crystallographica Section E

Structure Reports

Online

Diaquabis(1,10 -phenanthroline- $\kappa^{2} N, N^{\prime}$)manganese(II) pentafluorooxoniobate(V)

ISSN 1600-5368

Gang Zhu and Zong-Xun Tang*

Department of Chemistry, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China

Correspondence e-mail: tzxtq@163.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.033$
$w R$ factor $=0.092$
Data-to-parameter ratio $=12.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{NbOF}_{5}\right]$, each of the $\mathrm{Mn}^{\mathrm{II}}$ and Nb^{V} atoms has a distorted octahedral coordination. In the $\left[\mathrm{NbOF}_{5}\right]^{2-}$ anion, a characteristic short terminal $\mathrm{Nb}=\mathrm{O}$ bond and a longer $\mathrm{Nb}-\mathrm{F}$ bond are observed, which result in the out-of-center distortion of the octahedron, a manifestation of the second-order Jahn-Teller effect.

Comment

Early transition metal oxofluoro anions, such as $\left[\mathrm{NbOF}_{5}\right]^{2-}$ and $\left[\mathrm{TaOF}_{5}\right]^{2-}$, interest researchers because their inherent distortions mimic those in the $\left[\mathrm{NbO}_{6 / 2}\right]^{-}$octahedra in LiNbO_{3}, an excellent solid-state non-linear optical material. In the $\left[\mathrm{NbOF}_{5}\right]^{2-}$ anion, the Nb atom is displaced from the center of the octahedron towards the O atom, forming a short $\mathrm{Nb}=\mathrm{O}$ bond and a longer $\mathrm{Nb}-\mathrm{F}$ bond. The distortion can be exploited when designing new materials that exhibit important structure-dependent properties, such as piezoelectricity, second-order non-linear optical activity and ferroelectricity (Heier et al., 1998; Welk et al., 2002). Here the synthesis and crystal structure of a mixed-metal complex, diaquabis(1,10phenanthroline)manganese(II) pentafluorooxoniobate, (I), which incorporates the $\left[\mathrm{NbOF}_{5}\right]^{2-}$ anion, is reported.

The crystal structure of (I) consists of $\mathrm{Mn}^{\text {II }}$ complex cations and Nb^{V} complex anions (Fig. 1). The $\mathrm{Mn}^{\mathrm{II}}$ atom has an octahedral coordination, formed by two 1,10-phenanthroline(phen) and two water molecules. The Nb^{V} atom assumes a distorted octahedral coordination, formed by five F atoms and one O atom. The $\mathrm{Nb}-\mathrm{F}$ bond trans to the $\mathrm{Nb}=\mathrm{O}$ bond is significantly longer than the other four $\mathrm{Nb}-\mathrm{F}$ bonds in the same anion (Table 1). This feature has also been observed in previously reported structures (Halasyamani et al., 1996; Norquist et al., 1999; Izumi et al., 2005).

Bond-valence sums (Izumi et al., 2005) show that some of the F atoms are heavily underbonded (Table 3), and this is compensated by substantial hydrogen bonding (Table 2) to the complex cations. For example, the F atom (F5) trans to the

Figure 1
The asymmetric unit of (I), with displacement ellipsoids drawn at the 30% probability level. All H atoms have been omitted. [Please provide revised figure with no parentheses in labels]

Figure 2
The molecular packing of (I), viewed along the c axis. For clarity, all H atoms have been omitted. Dashed lines indicate $\mathrm{O}-\mathrm{H} \cdots \mathrm{F}$ hydrogenbonding interactions.
short $\mathrm{Nb}=\mathrm{O}$ bond (F5) accepts three hydrogen bonds; F 4 accepts two. Atom O 3 is hydrogen-bonded to one OH group. All H atoms of the water molecules and some H atoms of phen are involved in hydrogen bonding. The complex hydrogenbonding scheme results in the crystal packing shown in Fig. 2.

Experimental

All reagents were of analytical grade from commercial sources and used without further purification. $\mathrm{Nb}_{2} \mathrm{O}_{5}(0.133 \mathrm{~g}, 0.5 \mathrm{mmol})$ was first dissolved in HF solution $\left(1 \mathrm{ml}, 42 \mathrm{wt} \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ at 383 K for 2 h in a

Teflon-lined stainless steel vessel. After being cooled to room temperature, $\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.169 \mathrm{~g}, 1 \mathrm{mmol})$, phen $(0.396 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ were added to the above solution. The pH of the mixture was adjusted to about 6 by KOH . The mixture was then heated under autogenous hydrothermal conditions at 403 K for 3 d . After cooling to room temperature, the mixture was filtered. Yellow single crystals of (I) were obtained from the filtrate after several days.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{NbF}_{5} \mathrm{O}\right]$
$M_{r}=655.29$
Triclinic, $P \overline{1}$
$a=9.6242$ (4) \AA
$b=11.3971$ (5) \AA
$c=13.0605$ (5) \AA
$\alpha=72.341$ (2) ${ }^{\circ}$
$\beta=70.054(3)^{\circ}$
$\gamma=79.686(3)^{\circ}$

$$
V=1278.62(9) \AA^{3}
$$

$Z=2$
$D_{x}=1.702 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.01 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, yellow
$0.31 \times 0.20 \times 0.07 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.746, T_{\text {max }}=0.937$
12791 measured reflections 4530 independent reflections 3265 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$
$\theta_{\text {max }}=25.1^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.092$
$S=1.03$
4530 reflections
360 parameters

Table 1
Selected bond lengths (\AA).

Nb1-O3	$1.756(2)$	$\mathrm{Mn} 1-\mathrm{O} 2$	$2.137(3)$
$\mathrm{Nb} 1-\mathrm{F} 2$	$1.885(3)$	$\mathrm{Mn} 1-\mathrm{O} 1$	$2.149(2)$
Nb1-F1	$1.892(2)$	$\mathrm{Mn} 1-\mathrm{N} 4$	$2.245(3)$
Nb1-F4	$1.927(3)$	$\mathrm{Mn} 1-\mathrm{N} 1$	$2.254(3)$
Nb1-F3	$1.964(2)$	$\mathrm{Mn} 1-\mathrm{N} 2$	$2.281(3)$
$\mathrm{Nb} 1-\mathrm{F} 5$	$2.0516(19)$	$\mathrm{Mn} 1-\mathrm{N} 3$	$2.286(3)$

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 C \cdots \mathrm{~F}^{\mathrm{i}}$	$0.85(3)$	$1.81(3)$	$2.660(3)$	$176(4)$
$\mathrm{O} 1-\mathrm{H} 1 D \cdots \mathrm{O}^{\mathrm{ii}}$	$0.83(3)$	$1.83(3)$	$2.649(3)$	$175(5)$
$\mathrm{O} 2-\mathrm{H} 2 C \cdots \mathrm{~F}^{\text {iii }}$	$0.84(2)$	$1.72(2)$	$2.552(3)$	$172(3)$
$\mathrm{O} 2-\mathrm{H} 2 D \cdots \mathrm{~F}^{\mathrm{i}}$	$0.82(3)$	$2.31(4)$	$2.947(4)$	$135(4)$
$\mathrm{O} 2-\mathrm{H} 2 D \cdots 5^{\mathrm{i}}$	$0.82(3)$	$2.25(3)$	$3.028(3)$	$157(5)$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{~F}^{\text {iii }}$	0.93	2.48	$3.064(4)$	121
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~F}^{\text {iv }}$	0.93	2.46	$3.283(6)$	147
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{v}}$	0.93	2.59	$3.330(6)$	137
$\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{~F}^{\mathrm{vi}}$	0.93	2.43	$3.278(6)$	152
$\mathrm{C} 18-\mathrm{H} 18 \cdots 5^{\mathrm{vii}}$	0.93	2.44	$3.344(6)$	166

Symmetry codes: (i) $x-1, y, z+1$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+1,-y,-z+1$; (iv) $x-1, y, z$; (v) $-x,-y+1,-z+1$; (vi) $-x+2,-y,-z+1$; (vii) $x, y, z+1$.

metal-organic papers

Table 3
Bond-valence parameters.

	S_{i}	$V-S_{i}$
Nb1-O3	1.52	0.48
Nb1-F2	0.84	0.16
Nb1-F1	0.83	0.17
Nb1-F4	0.75	0.25
Nb1-F3	0.68	0.32
Nb1-F5	0.54	0.46

Water H atoms were located in a different Fourier map and refined with a restrained $\mathrm{O}-\mathrm{H}$ bond length of 0.85 (2) \AA and fixed isotropic displacement parameters of $0.08 \AA^{2}$. Other H atoms were placed at calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL.

We sincerely thank the Provincial Natural Foundation of Shaanxi for support.

References

Bruker (2002). SAINT, and SMART and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Halasyamani, P., Willis, M. J., Stern, C. L., Lundquist, P. M., Wong, G. K. \& Poeppelmeier, K. R. (1996). Inorg. Chem. 35, 1367-1371.
Heier, K. R., Norquist, A. J., Wilson, C. G., Stern, C. L. \& Poeppelmeier, K. R. (1998). Inorg. Chem. 37, 76-80.

Izumi, H. K., Kirsch, J. E., Stern, C. L. \& Poeppelmeier, K. R. (2005). Inorg. Chem. 44, 884-895.
Norquist, A. J., Stern, C. L. \& Poeppelmeier, K. R. (1999). Inorg. Chem. 38, 3448-3449.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
Welk, M. E., Norquist, A. J., Arnold, F. P., Stern, C. L. \& Poeppelmeier, K. R. (2002). Inorg. Chem. 41, 5119-5125.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

